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ABSTRACT

This report covers in detail the research work of the Solid State Division at
Lincoln Laboratory for the period I August through 31 October 2004. The topics
covered are Quantum Electronics, Electro-optical Materials and Devices,

Submicrometer Technology, Biosensor and Molecular Technologies, Advanced
Imaging Technology, Analog Device Technology, and Advanced Silicon
Technology. Funding is provided by several DoD organizations-including the

Air Force, Army, DARPA, MDA, Navy, NSA, and OSD-and also by the DOE,

NASA, and NIST.
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INTRODUCTION

1. QUANTUM ELECTRONICS

A wavelength tuning range A2 = 0.4 pm, at a center wavelength -3.7 um, has been demonstrated
from an optically pumped, GaSb-based semiconductor laser grown on a GaSb substrate when placed in a
Littrow external cavity. The peak single-facet output power was 1.2 W with a corresponding linewidth of
<10 GHz; when the laser element was placed in a Littman-Metcalf cavity, a narrower linewidth of <5 GHz
was achieved at the expense of a smaller tuning range of A2 = 0.27 prm and lower peak output power of
0.4 W.

2. ELECTRO-OPTICAL MATERIALS AND DEVICES

Extremely low surface recombination velocity as low as 30 cm/s has been achieved for 0.53-eV
GaInAsSb/AIGaAsSb double heterostructures grown by organometallic vapor phase epitaxy. This value
was determined from minority carrier lifetime measurements by photoluminescence decay, and is over an
order of magnitude lower than values reported previously.

3. SUBMICROMETER TECHNOLOGY

Numerical simulations of the impact of bubbles on liquid immersion lithography have shown that
the greatest effect is due to bubbles close to the resist surface. Beyond several bubble diameters the impact
of a bubble was shown to be negligible.

An experimental evaluation of the effects of surfactants on patterning quality for liquid immersion
lithography at 193-nm wavelength was conducted using a contact phase shift photomask. Measurements of
line edge roughness revealed no negative effects due to the surfactants.

4. BIOSENSOR AND MOLECULAR TECHNOLOGIES

The Affinity Magnet (AM) protocol has been incorporated into three versions of a field-portable
cartridge, with all required reagents and components contained within the cartridges. The three versions
are a two-valve cartridge consisting of modified commercial off-the-shelf (COTS) components, a single-
valve version using a custom design, and a single-valve cartridge using a COTS valve as the main element.

5. ADVANCED IMAGING TECHNOLOGY

The first prototype devices of a new charge-coupled device (CCD) architecture for adaptive imaging
in ground-based astronomy called the orthogonal-transfer array (OTA) have been successfully tested. The
initial characterization has focused on small OTAs consisting of 2 x 2 arrays of OTCCD cells and have
confirmed the correct operation of the addressing and control logic as well as the OTCCD cells.
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6. ANALOG DEVICE TECHNOLOGY

A novel digital compensation technique has been applied to linearize the generation of a
multigigahertz chirp. This approach combines recently available commercial high-speed digital, mixed-
signal, and analog integrated circuits along with microwave components to create a 15.5-24-GHz chirp
over 60 ns with <0.4% nonlinearity.

7. ADVANCED SILICON TECHNOLOGY

Alignment data obtained from wafers aligned and bonded in our facility have been analyzed. An
advanced wafer alignment tool currently under development is described.
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1. QUANTUM ELECTRONICS

1.1 WAVELENGTH TUNING OVER 2 = 3.5-3.9 pm FROM AN OPTICALLY PUMPED,
GaSb-BASED, SEMICONDUCTOR LASER

Wide wavelength tunability from mid-infrared laser sources operating in the range 2 = 3-5 ,m is of
interest for both commercial and military applications. For chemical sensing applications, narrow
linewidth operation is also required. Here, we report on wavelength tuning characteristics of GaSb-based,
optically pumped semiconductor lasers (OPSLs). The results expand upon those presented in a previous
report [1]. By refining the external cavity configuration, we have been able to achieve a tuning range >0.4
,pm with a laser linewidth <10 GHz.

The OPSL structure was based on the aluminum-free, integrated-absorber design [2]-[4]. The laser
structure was grown by solid-source molecular beam epitaxy on a (100) n-GaSb substrate. Ten equally
spaced type-Il "W" quantum wells, each consisting of 21-A InAs/24-A InGaSb/21--A InAs, were embed-
ded within the I-pam-thick Ga0.85 In0 .15As 0.08Sb 0.92 integrated absorber. A 4-pum-thick GaSb cap layer
served as the top optical cladding while the GaSb substrate served as the lower cladding. No aluminum
was used in the growth of this laser structure. The laser sample was cleaved to create 2-mm-long lasers and
mounted epi-side-down using In solder. Lasers were cooled in a liquid-nitrogen dewar and optically
pumped using a 2 = 1.8 pm InGaAs/InP diode laser array operating quasi-cw (100 us, 250 Hz). The
fast-axis far-field divergence from the OPSL was measured to be 300 full width at half-maximum
(FWHM). The peak power emitted per facet was measured to be 1.35 W at a pump power of 24 W. The
free-running laser wavelength was 3.87 ,pm with a spectral width of 0.04/pm FWHM. A two-layer antire-
flection coating consisting of A120 3 and TiO2 was then applied to the output facet while the rear facet
remained uncoated. This suppressed lasing from the device up to the highest pump power available.

The device was first placed in the Littrow external cavity depicted in Figure 1-1. The emission in the
fast axis was collimated using anf= 25 mm ZnSe asphere. Anf= -1250 mm CaF2 cylindrical lens having

-1 250-tur
Cylindrical

Lens

OPSL•

300-g/mm
25-mm Diffraction Grating

Asphere

Figure 1-1. Littrow external caviity configuration.
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Figure 1-2. Normalized laser spectra as wavelength is tuned using the Littrow external cavity. Laser was operated at
78 K and optically pumped at 2 = 1.8 pum under quasi-cw conditions.

power in the slow axis was used to partially compensate for the laser beam astigmatism. The first-order
diffracted beam from the 300-g/mm grating dispersed radiation along the fast axis of the optical mode with
a diffraction efficiency of -35%. This grating diffraction efficiency represents an upper bound to the
feedback level because additional losses are incurred in coupling from free space back into the laser mode.
The output beam was taken from the zero-order grating reflection. The calculated spectral bandwidth of
the feedback (FWI/e 2 of coupling efficiency) is <20 GHz over the wavelength range of interest. Figure 1-2
plots a series of spectra taken as the laser wavelength is tuned by rotating the diffraction grating. The laser
spectra were taken using a grating spectrometer in combination with a boxcar integrator set to a delay of 25
,us with respect to the leading edge of the pump pulse. The amplitude of each spectrum is normalized. The
lasing wavelength was tuned over 0.424 um from 3.512 to 3.936 ,um. Throughout the tuning range the
side-mode suppression ratio was greater than our noise floor of >25 dB. Figure 1-3 plots the peak output
power and threshold pump power as a function of wavelength. The peak output power is 1.2 W at 2 = 3.84
,um. A peak power of >0.5 W is obtained over a tuning range of 0.25 ,Um. At long wavelengths the
threshold pump power is <1 W. It was not possible to observe the expected increase in threshold at the long
wavelength limit of the tuning range because of a thermally induced shift in bandgap. The tuning range
towards shorter wavelengths is determined by a combination of thermal broadening, band filling, and
inhomogeneous broadening within the quantum well gain region. Figure 1-4 plots the laser linewidth as
measured using a scanning Fabry-Perot interferometer. At conditions corresponding to the maximum
achieved output power, a laser linewidth of 8.9 GHz was measured. As expected, this is roughly one half of
the calculated FWI/e 2 feedback bandwidth.

In an effort to further narrow the laser linewidth, the OPSL was placed in the Littman-Metcalf
external cavity shown in Figure 1-5. In addition to the optics used before, a gold-coated mirror reflects the
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Figure 1-3. Output power and threshold pump power as a finction of wavelength as the optically pumped
semiconductor laser (OPSL) is tuned using the Littrow external cavity. Laser was operated at 78 K and optically
pumped at A = 1.8 ,um under quasi-cw conditions. A peak output power of 1.2 W occurs at 2 = 3.84 sum.
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Figure 1-4. Laser linewidth of 8.9 GHz at a (,enter wavelength of A = 3.839 jim is measured using a Fabrv'-Perot
interjerometer under conditions yielding a peak output power of -1.2 W
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Figure 1-5. Littman-Metcalf external cavitY configuration.
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Figure 1-6. Output power and threshold pump power as a function of wavelength as the OPSI. is tuned using the
Littman-Metcalf external cavity. A peak output power of 0.4 W occurs at A = 3.72 fin.
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Figure 1-7. Laser linewidth measured using a scanning Fabrv-Perot inteiferometer at a center wavelength of A =
3.799 pin. At the maximum output power of 0.4 W, the measured laser linewidth is 4.7 GHz.

first-order diffracted beam from the grating back onto itself. The laser wavelength is tuned by rotating this
mirror. As before, the zero-order grating reflection provides the output. By double-passing the diffraction

grating, the dispersion is roughly doubled such that the feedback bandwidth is <10 GHz. At the angle of
incidence used in the experiments (Oi = 21 0), the diffraction efficiency is about 25%. Since the laser beam

double-passes the grating, the maximum obtainable feedback is (0.25)2 = 0.06. As shown in Figure 1-6, the
maximum output power was 0.4 W at A = 3.72 pm. A tuning range of 0.275 um was obtained. The
minimum threshold pump power was -3 W. Both the higher threshold and reduced tuning range are
attributed to the decreased feedback level. It is unclear, however, why the output power is lower as
compared to the Littrow cavity since the threshold pump power has not increased appreciably. The
high-resolution Fabry-Perot spectrum in Figure 1-7 shows that the laser linewidth does indeed narrow. A
linewidth of 4.7 GHz was measured at a peak output power of 0.4 W.

Thus, we have demonstrated that an aluminum-free OPSL can be tuned over a very wide wavelength
range with good efficiency by using standard external cavity techniques. The laser linewidth is well
predicted given the geometry of the external cavity.

A. K. Goyal G W. Turner
A. Sanchez M. J. Manfra
P. J. Foti P. O'Brien
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